ME 245

Engineering Mechanics and Theory of Machines

Portion 8 Introduction to Dynamics: Kinematics

Partha Kumar Das

Lecturer
Department of Mechanical Engineering, BUET http://teacher.buet.ac.bd/parthakdas/

Dynamics

Deals with the motion (position, velocity, acceleration, time) of a body without considering the cause of motion (Force)

Kinematics of a point (The body is treated as a point whose rotation about its own center can be neglected)
Kinematics of a rigid body (The body is treated as a point whose rotation about its own center can not be neglected)

Deals with the motion (position, velocity, acceleration, time) of a body without considering the cause of motion (Force)

Kinetics of a point (The body is treated as a point whose rotation about its own center can be neglected)

Kinetics of a rigid body
(The body is treated as a point whose rotation about its own center can not be neglected)

Kinematics of a Point: Relative Motion

Suppose, \mathbf{O} is any reference point. The relative position of \mathbf{B} with respect to A is given by,

$$
\boldsymbol{X}_{B / A}=\boldsymbol{X}_{B}-\boldsymbol{x}_{A}
$$

If it is divided by t, then similar formula can found for velocity.

$$
v_{B / A}=v_{B}-v_{A}
$$

Similarly, for acceleration,

$$
a_{B / A}=a_{B}-a_{A}
$$

In vector form,

$$
\begin{aligned}
\mathbf{X}_{B / A} & =\mathbf{X}_{B}-\mathbf{X}_{A} \\
\mathbf{V}_{B / A} & =\mathbf{V}_{B}-\mathbf{V}_{A} \\
\mathbf{a}_{B / A} & =\mathbf{a}_{B}-\mathbf{a}_{A}
\end{aligned}
$$

Problem 8.1 (Beer Johnston_10th edition_Ex11.9)

Automobile A is traveling east at the constant speed of $36 \mathrm{~km} / \mathrm{h}$. As automobile A crosses the intersection shown, automobile B starts from rest 35 m north of the intersection and moves south with a constant acceleration of $1.2 \mathrm{~m} / \mathrm{s}^{2}$. Determine the position, velocity, and acceleration of B relative to A, 5 s after A crosses the intersection.

Kinematics of a Point: Dependent Motion

Total Length of the Rope is constant

 during the motion of any loads or pulleys.Neglecting the distance from the support and load to the pulleys center, we can write,

$$
x_{A}+2 x_{B}=\text { constant }---(1)
$$

So, any small disturbance Δx_{A} will cause the disturbance Δx_{B} according to the formula.

$$
\text { So, } \Delta x_{B}=-0.5 \Delta x_{A}
$$

Differentiating equation (1) wrt t,

$$
v_{A}+2 v_{B}=0 \cdots(2)
$$

Similarly,

$$
a_{A}+2 a_{B}=0-\cdots--(3)
$$

Class Performance

Position Equation
$2 x_{A}+2 x_{B}+x_{C}=$ constant
Velocity Equation:
$2 v_{A}+2 v_{B}+v_{C}=0$
Acceleration Equation: $2 a_{A}+2 a_{B}+a_{C}=0$

Problem 8.2 (Beer Johnston_10th edition_Ex11.5)

Collar A and block B are connected by a cable passing over three pulleys C, D, and E as shown. Pulleys C and E are fixed, while D is attached to a collar which is pulled downward with a constant velocity of $3 \mathrm{~m} / \mathrm{s}$. At $t=0$, collar A starts moving downward from position K with a constant acceleration and no initial velocity. Knowing that the velocity of collar A is $12 \mathrm{~m} / \mathrm{s}$ as it passes through point L, determine the change in elevation, the velocity, and the acceleration of block B when collar A passes through L.

References

$>$ Vector Mechanics for Engineers: Statics and Dynamics
Ferdinand Beer, Jr., E. Russell Johnston, David Mazurek, Phillip Cornwell.

